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Abstract: Urbanization has been proven to be a critical factor in modifying local or regional climate 
characteristics. This research aims to examine the impact of urbanization on extreme climate indices 
in the Yangtze River Economic Belt (YREB), China, by using meteorological observation data from 
2000 to 2019. Three main steps are involved. First, a clustered threshold method based on remote-
sensing nighttime light data is used to extract urban built-up areas, and urban and rural meteoro-
logical stations can be identified based on the boundary of urban built-up areas. Nonparametric 
statistical tests, namely, the Mann–Kendall test and Sen’s slope, are then applied to measure the 
trend characteristics of extreme climate indices. Finally, the urbanization contribution rate is em-
ployed to quantify the impact of urbanization on extreme climate indices. The results indicate that 
urbanization has a more serious impact on extreme temperature indices than on extreme precipita-
tion indices in the YREB. For extreme temperature indices, urbanization generally causes more (less) 
frequent occurrence of warm (cold) events. The impact of urbanization on different extreme tem-
perature indices has heterogeneous characteristics, including the difference in contamination levels 
and spatial variation of the impacted cities. For extreme precipitation indices, only a few cities im-
pacted by urbanization are detected, but among these cities, urbanization contributes to increasing 
the trend of all indices. 
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1. Introduction 
The last decades have witnessed the frequent occurrence of extreme climate events 

across the world. Although a global warming hiatus (pause or slowdown) is a period of 
relatively little change in globally averaged surface temperatures, which is mainly mani-
fested by the lower warming rate of the global mean air surface temperature when com-
pared with 1998–2012 [1], the 2000s was the warmest decade on record since 1850, with 
many regional and global records broken. According to the fifth assessment reports pub-
lished by the Intergovernmental Panel on Climate Change (IPCC), there is little doubt that 
extreme climate events with unprecedented frequencies, intensities, and durations will 
continue to occur in the future [2]. The significant damage to human life and the ecological 
environment as a result of these extreme climate events has severely hindered sustainable 
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development. Consequently, the 2030 agenda of sustainable development goals released 
by the United Nations clearly states that all countries should adopt urgent action to ad-
dress climate change and its impacts [3]. Before measurement and policymaking, it is 
more significant to understand the association mechanism between extreme climate 
events and the driving factors. 

Urbanization has been proven to be one of the critical driving factors for climate 
change [4,5]. It changes the radiation, thermal and dynamic characteristics of the under-
lying surface and alters the land cover in an urban area to be completely distinct from that 
in surrounding areas, which will result in a horizontal gradient of moisture and energy 
between the urban area and its surrounding areas and further influence the local or re-
gional climate characteristics [6]. Urban climate change, as a result of urbanization, affects 
the physical environment more directly than global climate change [7]. According to this 
fact, a series of studies have focused on analyzing the impact of urbanization on climate 
change. The main differences in existing research are mainly reflected in the analytical 
object and study area. 

As a common analytical object or a representative phenomenon of urban climate 
change, the urban heat island (UHI) refers to the warmer temperatures experienced by a 
city than its surroundings [8]. The UHI magnitude or intensity can be evaluated from two 
perspectives: one is based on the energy balance differences between urban and rural ar-
eas, and the other is by comparing the air temperature between urban and rural areas. The 
former attempts to compute the types and sizes of heat fluxes generated within an area 
and then apply the energy balance calculation to account for UHI phenomena [9]. The 
energy balance can be used for clearly understanding the physical mechanism behind the 
UHI, but it is difficult to accurately obtain the information about heat fluxes. In contrast, 
although using the difference in air temperature between urban and rural areas cannot 
explain the physical mechanism, it is easy to determine the UHI intensity because only air 
temperature data at different sites need to be obtained. Literature statistics show that this 
method has been commonly applied to quantify UHIs [10,11]. 

In addition to the effects on air temperatures, urbanization can also affect extreme 
precipitation events by changing the formation and development of aerosols, clouds, etc. 
[12,13]. As demonstrated through an increasing number of studies, these extreme precip-
itation events are associated with increased urbanization [7–9]. Similar to the evaluation 
of UHI intensity, the commonly used method can also be divided into physical modelling 
and statistical analysis. Physical modelling aims to apply numerical simulation technol-
ogy, such as the weather research and forecasting model (WRF), for qualitatively identi-
fying the physical mechanisms of urbanization on precipitation [14–16]. However, the re-
quirement of high-resolution data and the uncertainty of the model parameters are obvi-
ous limitations. An alternative method is statistical analysis, which is based on the com-
parison of precipitation between urban and rural stations [17]. Due to the simple compu-
ting process, statistical analysis has also been widely used in existing research. Therefore, 
the statistical method for evaluating the impact of urbanization on extreme climate events 
was used in this study. 

Nevertheless, whether the statistical method is used to analyze the effects of urbani-
zation on UHI intensity or extreme precipitation, how to select urban and rural stations 
poses significant challenges because many relevant local-scale aspects need to be consid-
ered [18]. According to the difference in the main data source, existing methods for clas-
sifying stations can be roughly divided into two categories: one is mainly based on climate 
data, and the other is based on auxiliary data (population data, land use and land cover 
(LULC)). The former, such as empirical orthogonal function (EOF) decomposition and in-
terpolation isotherms, attempt to address the classification issue by highlighting different 
thermal or climate characteristics in urban‒rural pairs [19,20]. These methods can exhibit 
an obvious advantage when considering the boundary of the urbanization effect, but the 
sparse distribution of meteorological stations in most urban areas cannot effectively sup-
port these mathematical methods. 
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In contrast, these methods based on auxiliary data first extract urban built-up areas, 
and meteorological stations located in (outside) the urban built-up areas are then identi-
fied as urban stations (rural stations). Obviously, the crucial issue is to accurately obtain 
urban built-up areas. The spatial distribution of population density is one of the main 
sources used to extract urban built-up areas. Specifically, a threshold for the population 
needs to be set in advance, and an area with a higher value than the threshold is identified 
as a built-up area [21]. Nevertheless, it is difficult to determine the threshold because the 
population change with urban areas and to obtain accurate population data at a fine scale 
need to be further discussed. Remote sensing nighttime light data are useful for extracting 
large-scale built-up urban areas and have also been used to identify urban and rural sta-
tions [22]. Compared with other auxiliary data, namely, population data and LULC, re-
mote sensing nighttime light data can be directly collected by sensors and effectively re-
veal the area of human activities, which has attracted increasing attention in extracting 
urban built-up areas. However, empirical threshold-based methods were selected to ex-
tract urban built-up areas in previous studies on meteorological station classification [23]. 
They may overestimate the built-up areas in urban regions due to the ‘blooming’ effect of 
nighttime lights and over small patches in developing towns because of the relatively low 
value of nighttime lights. Consequently, an inaccurate result of urban built-up areas will 
result in error in station classification and further lead to an unreliable result of the impact 
of urbanization on UHIs or extreme precipitation. In this research, a clustered threshold 
strategy was used to extract urban built-up areas by remote sensing nighttime light data, 
which can avoid the above issues resulting from the empirical threshold-based method. 

In addition, due to the spatial heterogeneity of urban characteristics, such as land 
cover, impermeable layers, and industrial structures, the impact of urbanization on UHIs 
or extreme climate indices may vary with the study area or scale [24–27]. The Yangtze 
River Economic Belt (YREB), China, was selected as the study area. The YREB was posi-
tioned as a coordinated development belt for western, central, and eastern parts of China, 
a pioneering and demonstration belt for ecological and green civilization, and an inland 
river economic belt with a global influence [28]. The outline of the Yangtze River Eco-
nomic Belt Development Plan, released in March 2016, further emphasized a development 
pattern for the area with concentrations on ecological and green civilization [29]. Un-
doubtedly, this national strategy would provide an unprecedented opportunity for in-
depth development of the cities in the YREB. However, in recent decades, because of ur-
banization processes, climate conditions in the YREB have obviously changed [30]. The 
disastrous floods and extreme temperature events associated with climate change oc-
curred frequently and resulted in considerable economic loss and human lives in the 
YREB [31]. Therefore, it is of great significance to understand the impact of urbanization 
on extreme climate events in the YREB. 

The remaining paper is organized as follows. Section 2 introduces the study area and 
datasets. Section 3 introduces the method for identifying the impact of urbanization on 
extreme climate indices. The experimental results are described in Section 4. The conclu-
sion and discussion are presented in Sections 5 and 6, respectively. 

2. Materials and Methods 
2.1. Study Area and Datasets 

As the longest river in China and the third-longest river in the world, the mainstream 
Yangtze River flows through two municipalities (Chongqing and Shanghai) and nine 
provinces (Anhui, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, Sichuan, Yunan, and 
Zhejiang). The area covering these 11 provincial-level regions is called the YREB, which 
occupies 2.05 million square kilometers, accounting for approximately 21.3% of China’s 
land area. In 2017, the total population and GDP in the area were approximately 595 mil-
lion and 37,100 billion yuan, which correspond to 42.8% and 44.9% of the country’s total, 
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respectively [29]. The spatial distribution of the 11 provincial-level regions is shown in 
Figure 1, and each region is marked with a unique colour. 

 
Figure 1. Spatial distribution of the 11 provincial-level regions. 

The time series of daily maximum/minimum temperature and daily precipitation for 
20 years (2000–2019) were obtained from the China Meteorological Data Service Centre 
(http://data.cma.cn/en accessed on May 12, 2022). After the meteorological stations with a 
large amount of missing data were removed (the proportion of missing data at some sites 
was higher than 30%), there were 252 meteorological stations in the YREB, accounting for 
96% of the total number of all stations. Based on meteorological data at 252 stations, the 
software package RClimDex (http://etccdi.pacificclimate.org/software.shtml accessed on 
May 12, 2022) was applied to compute 27 extreme climate indices, including 16 extreme 
temperature indices and 11 extreme precipitation indices [32]. A brief introduction of 
these extreme climate indices is shown in Table 1. In addition, the vector map in the YREB 
[33] was also collected as auxiliary data for visualization and verification analysis. To dis-
tinguish urban and rural meteorological stations, remote-sensing nighttime light data [34] 
and built-up area data [35] were collected. 

Admittedly, because of changes in observation stations, instruments, schedules, and 
habits, inhomogeneous data or discontinuous points can be created [36]. The inhomoge-
neous data may cause deviations in estimating climate trends, resulting in inaccurate anal-
yses for regional climate detection [37]. It is critical to perform data homogenization so 
that the homogenous time series of climate variables contain only climate variation and 
regional trend information. In this study, there are nine stations whose locations have 
changed at least once. We deleted these climate data from these stations instead of adjust-
ing them. Compared with the number of all stations, the number of stations with location 
changes is less, and detecting these few stations may not have much impact on the analysis 
results. 

Table 1. Extreme climate indices. 

Category Index Unit Definition 

Extreme  
temperature  

indices 

FD0 * day 
Number of days with daily minimum temperature 

(TN) < 0℃ 

ID0 * day Number of days with daily maximum tempera-
ture (TX) < 0℃ 

TN10P *, TN90P # day Number of days with TN < 10th (>90th) percentile 
TX10P *, TX90P # day Number of days with TX < 10th (>90th) percentile 

TR20 #, SU25 # day Number of days with TN > 20 ℃ (TX > 25 ℃) 
TNn, TNx/TXn, TXx ℃ Minimum (maximum) value of TN/TX 

DTR K Difference between TX and TN 
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CSDI, WSDI day 
Number of days with TN < 10th (>90th) percentile 

for at least 6 consecutive days 

GSL day 
Numbers of days with daily average tempera-

ture>5 ℃ 

Extreme pre-
cipitation indi-

ces 

SDII mm/day 
Annual precipitation divided by the number of 

wet days 

CDD day 
Maximum number of consecutive days with daily 

precipitation amount (RR) < 1 mm (Maximum 
length of dry spell) 

CWD day 
Maximum number of consecutive days with RR ≥1 

mm 
RX1day mm Maximum daily precipitation amount 

RX5day mm 
Maximum precipitation amount for 5 consecutive 

days 
R10mm, R20mm, 

R25mm 
day Number of days with RR > 10mm (20, 25 mm) 

R95P, R99P day Number of days with RR > 95th (99th) percentile 
Prcptot mm Annual precipitation amount 

# Warm indices: TN90P, TX90P, TR20, and Su25; * Cool indices: FD0, ID0, Ta10P, TN10P, and 
TX10P. 

2.2. Methods 
As mentioned in the first section, the statistical method for evaluating the impact of 

urbanization on extreme climate events was used in this study [38–40], but how to accu-
rately identify urban and rural stations is crucial for the statistical method to evaluate 
urbanization on extreme climate indices. This research aims to apply a remote sensing 
method of selecting urban and rural stations for evaluating urbanization on extreme cli-
mate indices in the Yangtze River Economic Belt, China. The framework of this research 
is shown in Figure 2. The main process can be divided into three steps. First, a clustered 
threshold strategy based on remote-sensing nighttime light data is used to extract urban 
built-up areas [41], and urban and rural stations can be identified by the boundary of ur-
ban built-up areas [42–44], as described in Section 2.2.1. Second, the Mann–Kendall test is 
applied to determine the significant trends among the time series of extreme climate indi-
ces [45]. For the time series of an index at one station, if a significant increasing or decreas-
ing trend is confirmed, then Sen’s slope method is used to estimate the magnitude of the 
change trends of extreme climate indices [25]. Otherwise, the time series at the station is 
ignored in the subsequent analysis. The detailed introduction is described in Section 2.2.2. 
Third, based on the change trend of extreme climate indices at urban and rural stations, 
the urbanization contribution rate is applied to assess the impact of urbanization on ex-
treme climate indices, as described in Section 2.2.3. 

 
Figure 2. Framework of the statistical method for analyzing the impact of urbanization on extreme 
climate indices. 
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2.2.1. Classifying Meteorological Stations Using a Remote Sensing Method 
The remote sensing method was used in this research to classify meteorological sta-

tions into urban and rural stations. This method first extracts urban built-up areas by us-
ing remote sensing nighttime light data, and according to the topological relation between 
urban built-up areas and meteorological stations, the meteorological stations will be clas-
sified into urban and rural stations. Specifically, the meteorological stations located in the 
urban built-up areas are defined as urban stations, and those located outside the urban 
built-up areas are defined as rural stations. Obvious differences in nighttime light inten-
sity exist among urban areas with different urbanization levels because of varied urban 
development stages and energy consumption patterns. Therefore, the threshold for ex-
tracting urban built-up areas from nighttime light should change with the level of 
nighttime light intensity. It is reasonable to apply a clustered threshold strategy to handle 
this task. 

The clustered threshold strategy mainly includes three steps. First, an image segmen-
tation algorithm is used to obtain the potential urban built-up areas, which is defined as 
a set of areas composed of spatially continuous lighted pixels in the single-band nighttime 
light. A series of image segmentation algorithms have been proposed for object-based 
classification in remote sensing. Considering that the marker-controlled watershed seg-
mentation algorithm based on greyscale morphology is suitable for single-band remote 
sensing nighttime light images, this algorithm is used to obtain the potential urban built-
up areas. The detailed process can be found in the relevant literature [41]. 

Then, a clustering algorithm is applied to divide the potential urban built-up areas 
into several groups with similar nighttime light intensities. As only the total digital num-
ber of nighttime lights needs to be considered in the clustering process, the classical k-
means algorithm is used to divide the potential urban built-up areas [46]. The elbow 
method was used to determine the optimal cluster number k [47]. It considers the variation 
characteristics of the sum of squared deviations from the means in each cluster, the within 
sum of squares (WSS), which is defined as 

𝑊𝑆𝑆(𝑘) = (𝑥 − �̅� )  (1)

where 𝑁  is the number of objects belonging to the jth cluster; 𝑥  and �̅�  are the total 
DN values of the ith objects of the jth cluster; and �̅�  is the mean DN value of all the ob-
jects of the jth cluster. At some value for k, the WSS drops dramatically, and after that it 
reaches a plateau when the value of k continues to increase. This point, when this decrease 
in WSS dispersion slows down, is called the “elbow” [48]. In this situation, the optimal 
cluster k can be identified, and the clustering result is used to determine different thresh-
olds for extracting urban built-up areas. 

Finally, for each cluster, the optimal threshold to classify the urban and rural areas is 
detected by comparing the areas of the statistical data and urban built-up areas with dif-
ferent thresholds. That is, the statistical data through an official survey always accurately 
record the total area of each urban built-up area. The different results of the built-up areas 
can be obtained based on a set of thresholds. The total area of the built-up area can be 
directly based on the number of pixels whose DN values are larger than the threshold. 
The optimal threshold corresponds to the built-up area closest to the statistical data. Spe-
cifically, assume that the set of thresholds is t = {t1, …, tn} (i = 1, …, n), and for each thresh-
old, the total area of the built-up areas A(ti) (i = 1, …, n) can be obtained by counting the 
number of pixels whose DN values are larger than ti. The optimal threshold 𝑡  for a clus-
ter can be computed as 

𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 |𝐴(𝑡 ) − 𝑆| (2)

where 𝑆 is the total area of each urban built-up area from an official survey. 
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2.2.2. Identifying the Change Trends of Extreme Indices 
In this study, the nonparametric Mann–Kendall (MK) test is used to detect the signif-

icant trends among the time series of extreme climate indices. A positive (negative) value 
of the MK statistic indicates an increasing (decreasing) trend in the data. For a sample size 
> 10, a normal approximation to the Mann–Kendall statistics Z can be applied to test sig-
nificance. If Z is greater than 𝑍 / , where α is the significance level (0.10 in the study), it 
is considered a significant trend [49]. 

The Sen’s slope method was selected to estimate the magnitude of the change trend 
of extreme climate indices. As a nonparametric method, Sen’s slope assumes a linear trend 
in the time series and then applies a linear model to calculate the slope of the trend [50]. 
A positive value of the estimator corresponds to an increasing trend, and a negative value 
indicates a decreasing trend in the time series. As the slope estimator is calculated through 
the median statistic, Sen’s slope is robust to outliers and missing data. 

2.2.3. Assessing the Impact of Urbanization on Extreme Climate Indices 
The impact of urbanization on extreme climate indices can be reflected by the linear 

trend changes in extreme climate indices at urban stations resulting from urbanization 
[51]. The impact value Δβ can be defined as: 

∆𝛽 = 𝛽 − 𝛽  (3)

where 𝛽  and 𝛽  indicates the change trend of extreme climate indices at urban and ru-
ral stations, respectively. A positive value of the impact value ∆𝛽 corresponds to an in-
creasing trend of urbanization on extreme climate indices, and a negative value indicates 
a decreasing trend of urbanization on extreme climate indices. Furthermore, the urbani-
zation contribution rate is expressed as: 

𝑟 = |∆𝛽/𝛽 | × 100% (4)

where if 𝑟  is equal to 0, it means that urbanization has no contribution to the extreme 
index extreme at urban stations, and if 𝑟  is equal to 100%, it means that the change trend 
of extreme climate indices at urban stations is completely caused by urbanization. Nota-
bly, because some unknown local factors may exist, the values of the urbanization contri-
bution rate may be greater than 100%, and in this case, the urbanization contribution rate 
is also regarded as 100% [52]. 

3. Results 
3.1. Classification of Meteorological Stations 

As introduced in Section 2.2.1, the watershed segmentation algorithm was first used 
to obtain the potential urban clusters. The spatial distribution of potential urban built-up 
areas is shown in Figure 3, and the orange area indicates the potential urban built-up area. 
The nighttime light intensity of potential urban built-up areas was then aggregated into 
prefecture-level cities based on the administrative boundary. Furthermore, the number of 
clusters defined using the k-means cluster algorithm over the nighttime light intensity 
was tested for k = 2, …, 8. The estimates of WSS for different k are visualized in Figure 4. 
The number of clusters was set to 4 since the WSS drops dramatically when k is from 3 to 
4 and reaches a plateau when k is from 4 to 5. The cluster result is presented in Figure 5, 
and these four clusters are displayed in different colors. From Cluster 1 to 4, the nighttime 
light intensity of prefecture-level cities gradually increases, but the number of these cities 
gradually decrease. 
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Figure 3. Spatial distribution of potential urban built-up areas. 

 
Figure 4. The estimates of WSS for different k. 

 
Figure 5. Cluster results of potential urban clusters. 

For each cluster, different results of extracting the built-up areas can be computed 
based on a set of thresholds. In Figure 6, the horizontal axis indicates the DN threshold, 
and the vertical axis represents the absolute value of the difference between the built-up 
area from the remote sensing data and the statistical data. Based on Equation (2), the op-
timal threshold corresponds to the lowest value of the cures in Figure 6. Therefore, the 
optimal thresholds for Cluster 1 to 4 are 2, 18, 21, and 23, respectively. According to the 
optimal threshold of each cluster, the final urban built-up areas can be identified. Further-
more, urban and rural stations can be separated based on the boundary of these built-up 
areas. The total number of urban and rural stations are 203 and 41, respectively. The 
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spatial distribution of urban and rural stations is shown in Figure 7, and the orange 
squares and blue circles indicate rural and urban stations, respectively. 

 
Figure 6. The estimates of WSS for different k. 

 
Figure 7. Spatial distribution of urban and rural stations. 

Notably, a potential assumption in Equation (3) is that the urban and rural stations 
are usually distributed in adjacent locations. Due to the significant difference in the num-
ber of stations between urban and rural areas, the nearest rural stations of some urban 
stations may be far away from them and have different climate characteristics that not 
only result from the urbanization. In that case, the urban stations should be ignored be-
cause of the lack of nearby rural stations as a reference. Consequently, to filter out these 
cities and retain the prefecture-level cities with higher urbanization levels, we built a 110 
km buffer zone centered on each rural station, and these urban stations within a buffer 
are reserved. Here, a buffer radius that is too large violates the principle of proximity be-
tween urban and suburban stations, which may lead to extreme climate impacts not com-
pletely caused by urbanization. Too small a buffer radius may lead to many cities not 
referring to rural stations. Considering the above conditions, the buffer radius was se-
lected as 110 km. In this situation, the radius was not too large, and more rural stations 
could be matched to urban stations. Finally, 99 urban stations (or cities) and 38 rural sta-
tions were determined, which are shown in Figure 8. 
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Figure 8. Result of matching urban and rural stations based on 110 km buffer. 

3.2. The impact of Urbanization on Extreme Temperature Indices 
For each extreme temperature indices, the MK test and Sen’s slope method were first 

used to detect the significant trends among time series at both urban and rural stations. 
The statistical results are listed in Figure 9. The horizontal axis represents extreme tem-
perature indices, and the vertical axis indicates the proportion of cities with different trend 
types in the number of all cities. Overall, these indices, including TN90P, TR20, TNx, and 
TX90P, exhibit significant upward trends, and TX10P and TN10P show significant down-
wards trends at most stations. There are no significant or dominant trends in the remain-
ing indices. The indices with significant upward trends mainly consist of warm indices 
(TN90P, TR20, and TX90P). Meanwhile, all the indices with significant downwards trends 
(TN10P, and TX10P) are cold indices. 

 
Figure 9. Percentage of meteorological stations with different trends for the extreme temperature 
index. 

Furthermore, based on Equations (3) and (4), the urbanization contribution rates on 
TN90P, TR20, TNx, TX90P, TN10P, and TX10P can be obtained. The spatial distribution 
and urbanization contribution rates of the impacted cities are shown in Figure 10. Only 
cities in which extreme temperature indices had a significant impact caused by urbaniza-
tion are labelled in Figure 10. The red and green triangles represent the impact of urbani-
zation with a dominant upwards and downwards trend, respectively, and the size of tri-
angles represents urbanization contribution rates, which was divided into four intervals, 
namely, [0%, 25%), [25%, 50%), [50%, 75%), and [75%, 100%]. Among all 99 cities, the total 
number of cities in which TN90P, TR20, TNx, TX90P, TN10P, and TX10P were impacted 
by urbanization was 36, 24, 9, 11, 20, and 7, respectively. Among these indices affected by 
urbanization with a dominant upwards trend, TN90P was the most severely affected by 
urbanization, followed by TR20. Both TNx and TX90P are similarly affected by 
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urbanization, but only a very small number of cities were detected. It can also be found 
that the spatial distribution of these cities is inconsistent. Cities of which TN90P, shown 
in Figure 10(a), was impacted by urbanization covered most areas of the YERB. However, 
most of them are distributed in the middle reaches, including Chonqing, Guizhou, Hubei, 
and Hunan Provinces, where the urbanization contribution rates are mainly located in the 
range of 25% to 75%. Overall, other cities located upstream and downstream have low 
contribution rates. In Figure 10b, cities of which TR20 was impacted by urbanization are 
also mainly distributed in the middle reaches with a high variance of urbanization contri-
bution rates (the range is from 0% to 75%). The downstream cities with high values of 
urbanization contribution rates are in Anhui Province. For the cities in which TNx and 
TX90P were impacted by urbanization, as shown in Figure 10c,d, there was no spatial 
aggregation pattern. 

 
Figure 10. Urbanization contribution rates of different extreme temperature indices: (a) TN90P, (b) 
TR20, (c) TNx, (d) TX90P, (e) TN10P, and (f) TX10P. 

In the indices impacted by urbanization with a dominant downwards trend, TN10P 
is more seriously impacted by urbanization than TX10P. As shown in Figure 10e, cities 
corresponding to TN10P are mainly distributed in the middle reaches of the YERB, 
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including Chongqing and Hubei provinces, and many values of urbanization contribution 
rates are greater than 50%. Although TX10P was not severely impacted by urbanization, 
as shown in Figure 11f, the spatial distribution of the impacted cities exhibits an agglom-
eration pattern, and most of the cities are located in Sichuan Province. 

 
Figure 11. Percentage of meteorological stations with different trends for the extreme precipitation 
index. 

3.3. The Impact of Urbanization on Extreme Precipitation Indices 
Similarly, the nonparametric statistical test was applied to identify different types of 

trends among the time series of extreme precipitation indices at both urban and rural sta-
tions. The statistical results are shown in Figure 11. For all extreme precipitation indices, 
the number of cities with no significant trend is the largest. In the cities in which the index 
has a significant trend, there are more cities with an upwards trend than those with a 
downwards trend. Only cities of which Prcptot was impacted by urbanization are spa-
tially clustered and mainly located downstream of YERB, as shown in Figure 12. 

 
Figure 12. Urbanization contribution rates of the extreme precipitation index Prcptot. 

4. Discussion 
Understanding the impact of urbanization on extreme climate events is a crucial topic 

in climate change. This research used the statistical comparison of extreme climate be-
tween urban and rural stations to measure the impact of urbanization on extreme climate 
events. Compared with physical modelling, statistical analysis exhibits obvious ad-
vantages and limitations. It can be directly used to measure the impact based only on 
climate data from different stations, but the method cannot describe the physical mecha-
nism behind these climate processes. Among the statistical methods, an important process 
was how to classify meteorological stations into urban and rural stations, which was fur-
ther converted to the issue of the identification of urban built-up areas. Therefore, a 
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clustered threshold strategy based on nighttime light data was then presented to handle 
this issue. Compared with other methods, such as empirical orthogonal function decom-
position and interpolation isotherms, the remote sensing method only involves nighttime 
light data, which are easily accessible, and the principle for meteorological station classi-
fication is also easy to understand. 

The YREB with rapid urbanization development was selected as the study area. Pre-
vious studies on the extreme climate of the YREB [53] mainly focused on the characteris-
tics of extreme temperatures [45] and extreme precipitation [54] and rarely explored the 
impact of urbanization on the extreme climate of the YREB [55]. In this research, it was 
found that the number of meteorological stations with significant trends for extreme tem-
perature indices was higher than that for extreme precipitation indices. This conclusion 
was also demonstrated in related studies. For example, Cheng et al. found that the number 
of extreme temperature indices with significant changes in the Yangtze River Basin from 
1958 to 2017 was 2.8 times that of the extreme precipitation index [55]. Among these ex-
treme temperature indices, warm indices, including TN90P, TR20, and TX90P, always ex-
hibit an upwards trend, and most of the cold indices, such as TN10P and TX10, show a 
decreasing trend in the study area, which is also consistent with the results in other re-
gions or local regions in the YREB. For example, Zhao et al. found that the warm indices 
showed upwards trends in the Beijing-Tianjin-Hebei regions during the period 1980-2015, 
while the cold indices tended to decrease [25]. Shi et al. found that the main cold index of 
the extreme temperature index in the Yangtze River Basin showed a downwards trend 
from 1970 to 2014, and the main warm index of the extreme temperature index showed 
an upwards trend [45]. 

The urbanization contribution rates were used to quantitatively measure the impact 
of urbanization on extreme climate indices. The impact of urbanization on extreme tem-
perature indices has obviously heterogeneous characteristics, which is mainly reflected in 
the following two aspects. One is that urbanization has distinct levels of impact on differ-
ent extreme temperature indices, and TN90P, TR20, and TN10P were seriously affected 
by urbanization. The other is that the impact of urbanization on different indices has spa-
tial variability; that is, for different extreme temperature indices, the spatial distribution 
of the impacted cities is inconsistent. For example, cities in which TN90P, TR20, and 
TN10P were impacted by urbanization are mainly distributed in the middle reaches, and 
most of the cities in which TX10P exhibits a downwards trend are located in Sichuan Prov-
ince. This similar conclusion was also demonstrated in related studies. For example, Qiu 
et al. found that extreme temperature indices (TNn, TXx) in China increased significantly 
from 1960 to 2016 with varying degrees in different seasons and different regions [52]. Lin 
et al. found that in 20 urban agglomerations in China from 1971 to 2014, for both extreme 
temperature and precipitation indices, urban and rural areas exhibit remarkably distinct 
changes and demonstrate a significant urbanization effect, which also varies across differ-
ent climate backgrounds [26]. 

The impact of urbanization on extreme precipitation indices was lower than that on 
extreme temperature indices, which indicates that extreme precipitation indices were not 
susceptible to urbanization in the YREB. The impacts on extreme precipitation indices dis-
play stronger regional discrepancies than those on temperature extremes [26]. In previous 
studies, there was no consistent conclusion on the impact of urbanization on extreme pre-
cipitation indices. Some researchers found that urbanization caused great precipitation 
and heavy precipitation frequency [56], and one potential reason is that because of the 
effect of urban heat islands, local thermodynamics and unstable atmospheres may result 
in stronger precipitation in urban areas [57]. Other researchers demonstrated that the in-
crease in aerosols and the associated cloud microphysical process could cause the reduc-
tion in precipitation in the urbanization process [58], and a downwards trend of extreme 
precipitation indices might be exhibited in some cities [59]. The results in this research 
demonstrated that the extreme precipitation indices of only a few cities exhibited a 
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significant trend, so urbanization did not absolutely affect the 9 extreme precipitation fre-
quencies. 

In addition, we also found that the cities of which Prcptot was significantly impacted 
by urbanization were concentrated in the Yangtze River Delta, especially in Zhejiang Prov-
ince. Meanwhile, Prcptot shows a downwards trend in these areas. However, in the study 
of Yuan et al., the change trend of Prcptot in the Yangtze River Basin from 1961 to 2020 was 
not significant [50], and Prcptot was not proven to be impacted by urbanization. This re-
search found that TX90P had the most significant growth trend of 5.7 days/10 years only in 
Yunnan Province. However, Shi et al. found that from 1970 to 2014, warm days (TX90P) in 
the Yangtze River Basin obviously increased, with a trend of 4.73 days/10 years [45]. 

This research only focuses on quantifying the impact of urbanization of cities on dif-
ferent extreme climate indices in the YREB and was not conducive to a deep discussion 
regarding the potential association relationship, namely, how to explain the heterogene-
ous characteristics of the impact of urbanization on extreme climate indices. The above 
content needs to be discussed in future research. 

5. Conclusions 
In this research, the impact of urbanization on extreme temperature and precipitation 

indices in the YREB was examined by comparing the trend characteristics of urban and 
rural stations. The specific process mainly includes three steps: a clustered threshold 
method based on remote-sensing nighttime light data is first applied to extract urban 
built-up areas, and urban and rural meteorological stations can be identified based on the 
boundary of urban built-up areas. The total numbers of urban and rural stations were 203 
and 41, respectively, and 99 urban stations with corresponding rural stations were finally 
selected. The nonparametric statistical method is then applied to measure the trend char-
acteristics of extreme temperature and precipitation indices. The warm indices (TN90P, 
TR20, and TX90P) show significant upwards trends, and all the indices with significant 
downwards trends (TN10P and TX10P) were cold indices. Except for a few cities in which 
extreme precipitation indices show an upwards trend, those indices did not exhibit a sig-
nificant trend in most urban areas. Based on the change trend of extreme climate indices 
at urban and rural stations, the urbanization contribution rate is applied to assess the im-
pact of urbanization on extreme climate indices. Overall, urbanization has a more signifi-
cant impact on extreme temperature indices than on extreme precipitation indices. Urban-
ization leads to a more (less) frequent occurrence of warm (cold) events. The impact of 
urbanization on different extreme temperature indices has heterogeneous characteristics, 
which are reflected in the difference in contribution levels and spatial variation of the im-
pacted cities. The extreme precipitation indices of only a few cities exhibited a significant 
trend, so urbanization did not absolutely affect the frequency of the nine extreme precip-
itation events. 
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